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1. INTRODUCTION

The aim of this paper i---to emphasize that there exists a unified ap-

proach for solving initial' value problems for equations in 1, 1+1 (i.e.,

one spatial and one temporal), and 2+1 (i.e., two spatial and one tem-

poral) dimensions. Furthermore it remarks on inverse problems in higher

than two spatial dimensions. Although these inverse problems are not

related to physically significant nonlinear evolution equations, they ".

are useful in the context of inverse scattering. In this presentation

we emphasize the main ideas. The detail formalisms can be found in

the cited papers.

It turns out that solving the initial value problem for some equa- -..

tions for q(t), or q(x,t), or q(x,yt) is equivalent to solving an
inverse problem for some related eigenfunction Y(z;t), or Y(z;x,t),
or V(z;x,y,t). The inverse problem takes the form of a Riemann-Hilbert

(RH) problem for equations in 1 and 1+1, and the form of a nonlocal RH

problem or of a D(DBAR) problem for equations in 2+1 (a DBAR problem "

is generalization of a RH problem). To define the relevant RH or DBAR

'This article consists of expanded material of six lectures presented
by one of us (A. S. Fokas) at the Workshop on "Solitons," Tiruchirapalli,
India, January 1987.
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problems one needs to study the analyticity properties of T with

respect to z. Furthermore those problems are uniquely defined in terms

of certain asymptotic data of the underlying linear system satisfied

by V: Monodromy data in 1, scattering data in 1+1 and some cases of

2+1, and inverse data in some cases of 2+1. We use the Painleve IV(PIV),

modified KdV (mKdV) and the Davey-Stewartson (DS) as illustrative exam-

ples of equations in 1, 1+1, and 2+1 respectively.

The above inverse problems can be naturally generalized to higher

than two spatial dimensions. For example, the ;eneralizaticn of t'e

inverse problem associated with the DS equation leads to an inverse

problem for a matrix valued function Y(z;xox), z . Cn, Xo 0 I 1

x C n, n > 1. However, while the associated potential q(x0 ,x) depends

on n+1 variables, the inverse data T(zR,zl,m2 .... mn), zR ]Rn, z 1  n,

mt c, depends on 3-Ivariables. This has important implications: (a)

The inverse data must be appropriately constrained. This "characteri-

zation" of the inverse data is conceptually analogous to the charac-

terization of the inverse scattering data in the multidimensional

Schr6dinger equation [1). (b) The existence of "redundant" scattering I
parameters can be used to reduce the above problem to one in two spatial

dimensions. This is in contrast to the case of the multidimensional

Schr6dinger equation where the inverse problem can be solved in closed

form. (c) Since the inverse problem for T is reduced to one in two

spatial dimensions, it follows that, if one allows T , q to depend

parametrically on t, q(x0,x,t) satisfies an evolution equation reducible

to two spatial dimensions. In particular, the N-wave interaction equa-

tion in n+1 spatial dimensions can always be reduced to two spatial

dimensions. Thus a genuine three-spatial-dimensional nonlinear evolution S

equation, related to an inverse problem, remains to be found. (It should

be noted that several other "multidimensional" problems can be reduced

to one or two spatial dimensions, see M. J. Ablowitz's contribution

in these proceedings.)-"

We first define the standard RH and DBAR problems. -

2. RH AND DBAR PROBLEMS /

Let C be a simple, smooth closed contour dividing the complex z-plane

into twc rejiolls D and L, (the positive direction of C will be taken
as that for which D+ is on the left).

.. A1a' V J .,t J,
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Fig. 1

A function 4(z) defined in the entire plane, except for points

on C, will be called sectionally holomorphic if: (i) the function O(z)

is holomorphic in each of regions D + and D- except, perhaps, at z =

(ii) the function #(z) is sectionally continuous with respect to C,

approaching the definite limiting values * (c), *-( ) as z approaches

a point on C from D+ , or D-, respectively. The classical homogeneous

RH problem is defined as follows [2]. Given a contour C, and a function

G(C) which is Holder on C and det G(C) * 0 on C, find a sectionally

holomorphic function U(z), with finite degree at , such that

0 (C) = G(.) -(C), on C, (2.1)

where -(0 ) are the boundary values of O(z) on C. If G(C) is scalar,

(2.1) is solvable in closed form. If G(C) is a matrix valued function,

then (2.1) is in general solvable in terms of a system of Fredholm

integral equations. Various generalizations of the above RH problem

are possible. For example: (i) The contour C may be replaced by a

union of intersecting contours. (ii) G(O] may have simple discontinui-

ties at a finite number of reints; in this case one allows *( ' to

have integrable singularities in the neighbourhood of these points.

(iii) RH problems may be considered in other than H61der spaces (e.g.

131): (iv) One may consider inhomogeneous RH problems 9+(C) G(C)*$-(C)

+ F( ) on C.

The DBAR problem can be defined as follows- Given 3t,';z, firad t.

If W4' a 0 everywhere except on a curve, then the DBAR problem reduces

to a RH problem (since 30/3z - - 9-, in a distribution sense). The

DBAR problem can be solved via the following extension of Cauchy's

.'. . -" ' .",.' -.- - .- " " ... -. " ". - ,""'.'-" "..,v. ".' 'N.-.L-,-N~I..,% , " '. ' N N , " .b
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formula [4]

1 I - I uI( j I f d _)

7(z) 2 J - dC d- (2.2)

It is interesting that the first RH problem was formulated in connec-

tion with an inverse problem (see 1121 for references). Actually RH

problems are intimately related to solutions of inverse problems in

1+1, 2+1, and 1 dimensions:

3. INVERSE PROBLEMS IN 1+1

We recall that a necessary condition for a given nonlinear equation

for q(xt) to be solvable via IST is that this equation is the compati-

bility condition of a Lax pair of linear equations. Let us consider

the modified KdV equation

q +  q - 6q2q 01 (3.1)

as an illustrative example. Equation (3.1) is the compatibility condi-

tion of

IV (z;xt) = iz(J , V(z;x,t)] Q'(z;x,t);X

,tQ ( 13.2a)
0 q 0

Yt(Z;X,t) 1U0 , (z;xt)1 + OT(z;xt) (3.2b)

3 2 2 3_

(-4iz 0 3)-21zq
2  4qz +2iq z2q q

I I x xxjas
U 0 . (1 0 .i~ ~4z~i

2 -2 3 _ 2 q 2  zJ
0 4iz 3  'q 2 z+2q -qxx Z [

dz

We first note that the above Lax pair is isospectral, i.e., a- 0.

Aljo iL t6inS oUL thaL equatfn (3.2a) is of primary importance; equa-

tion (3.2b) plays only an auxiliary role. To solve the initial value "

problem for initial data decaying as IxI-- , one first formulates an

inverse problem for Y(z;x,t): Given appropriate scattering data

reconstruct Y.

.

-A



By studying the analytic properties of y with respect to z, where

y satisfies (3.2a) one establishes the existence of a y which is

a sectionally meromorphic function of z, with a jump along the Re z N

axis. This jump as well as the residues of the poles, are given in

terms of appropriate scattering data. Thus the inverse problem is

equivalent to a matrix, regular, continuous RH problem defined along

the Re z axis and uniquely specified in terms of scattering data.
A.

Since in the above discussion we have only used (3.2a), it is evident

that one may pose an inverse problem for any function q(x). However,

this result is useful for solving the initial value problem for q(x,t)

only if q evolves in such a way in t, that the scattering data is known

for al-1 t. If y evolves in t according to (3.2b) (i.e., if q solves

(3.1 ) then it turns out that the evolution of the scattering data with

respect to t is simple. Hence, the above RH problem is specified in

terms of initial scattering data; its solution yields Y(z;x,t) and

then (3.2a) gives q(x,t).

We summarize the results of lTJVconcerning mKdV in the case of

solitonless potentials. 2

Proposition 3.1 (Bounded eigenfunctions). A solution of (3.2a) bounded

for all complex values of z = z R + izI and tending to I as z - is

given by A.

, T (z;x), z1  > 0

y(z;x) w f (3.3)

' (z;x), z 0

where Y'(z;x) satisfy the following integral equations:

'-(z;x) I + d e Q(0) (z;E)

-x dt eZ(X-)J(.; + i (3.4)

where if F and Y are 2 x 2 matrices then

I-

. % r ~C I
-A~ %~ % %. %. % *.~~ . . .



eYF = eYFe -
, %_F0 F 12 - (3.5)0 0 F 21 0

W0 F - Diag(F 1 1,F2 2 ).

Proposition 3.2 (Departure from Holomorphicity-Scattering Equation).

?4, ? are holomorphic functions of z for zI > 0, z1 < 0 respectively.

The departure from holomorphicity for z a ZR is given by

? +(z;xJ - Y-(z;x) Y+eizx (I-B- (z)b(z)) (3.6)

Lwhere

(Z) " -izJ +
#I + dte ?1+(Q? b(z) 1

so,

It (z;x)eiZcJ(BlI(z)b(z)) = Y-(z;x). (3.7)

Proposition 3.3 (Inverse Problem-Reconstruction of Q)

0(x) is obtained from

Qlx) 0J, dz'Y(z';x)e zz  (I-B (z')b(z'))j (3.8)

where T(z;x) solves the following Riemann-Hilbert boundary value problem:

(z;x) + I fi dz'Y(z';x)eiZ'xiJ(I-B-l (z')b(z')) (3.9)
-- Z - (z - iO)

Using equation (3.2b) we obtain:

Proposition 3.4 (Evolution of Scattering Data). The evolution of the

scattering data from B(z;O), b(z;O) is g.ven by

U0t Ut
B(z;t) a e B(z;0), b(z;t) e e b(z;0).

Since B (resp. b) is a strictly upper (resp. lower) triangular matrix
the evolution of the scattering data is given by

SR " ': " " "" ' "" "" " " ' "" " " " """ "" 4 " . . . . . .•,
"5 %" ' "" " " '" """ " i i # " "%
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B (z- 4 a e - z t B- (z-) b -t e4 8 i z~ - b p z~ 0. (. 10)

4. INVERSE PROBLEMS IN 2+1

w-,

Let us consider the Davey-Stewartson equation (a two dimensional ana-

logue of the nonlinear Schr~dinger equation) .

J.

1 2 2 2Q 2 2Y 2
io t + (a Qxx+0y) -a01 QI + 00, 0x: a 2A 22I Q1~x; •

S= t 1 (4.1)

as an illustrative example. A Lax pair for (4.1) is given by "

Yx = izlJY-YJ) + q? + oJYI J 4 q (4.2a)
- 0 0

2,.

Yt A A3T yy + A 2 Ty + At z2'A 3T-TA 30 + 2izA 3 Ty + -, T (.b

+ iAz, 142bt"

Where A, A 2 ' A 3, A30 are appropriate matrix functions of Q, (The bar

denotes complex conjugate).r

The situation is conceptually similar to the case of +a: To solve

the initial value problem for q(x,y,t) one first formulates an inverse
problem for t(z;x,y,t). Depending on the value of there exist two

different cases (for brevity of presentation we assume non-existence
of poles, i.e., non-existence of lumps): (i) a 1. There exists a %

T which is a sectionally holomorphic function of z and which has a

jump along thre ez axis. This jumpair fo (4.1 isn terms of scatternc k

data but it depends on them in a non-local way. Thus the inverse pro- 7%

blem is equivalent to a non-local, matrix continuous RH problem defined

along the Re z axis and uniquely specified in terms of scattering data.. %

(li) = -i. There exists a T which is bounded for all complex z,.

but which is analytic nowhere in the complex z plane. However, its

departure from holomorphicity 3Y/az can be expressed in terms of appro-

priate inverse data. Thus, now the inverse problem is equivalent to a "-
(DBAR) problem: Given Y /z reconstruct q]2

I

Using t4.2b, again one shows that the inverse scattering and the
inverse data evolve simply n times Hence, t e above H and problems
are specified in terms of initial data their solutions yield Y(zx,y,t)

i44
jumpalog th Rez axs. his umpis aso ivenin ermsofcattrin

'r "%".'-databut'it depend.on'them in- non'$"%%%,%,. ,, .. %%¢- -loal -way. Thus the '." ines pro-.". ,'d ". .
• ' , ."". .-. ' . ., '. b.le.m.,,". is equvent., ,. to a non.-loca," matrix'' ',... continuous. RH",.. prole defined'.;",'.,.-•
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A' and then (4.2a) gives q(x,y,t).

We summarize the results of (61 concerning DSI (C - 1, Proposition

4.1.-4.4) and DSII (a - -i, Propositions 4.5-4.8).

Proposition 4.1 (Bounded Eigenfunctions) A solution of 14.2a) with

a 1 bounded for all complex values of z - zR + izI and tending to I

as z a is given by

T+(z;xy), z > 0I'. I
Tlz;x,y) ( 4.3)

T (z;xy), zI  < 0

where T±(z;x,y) satisfy the following integral equations:

Yz:xy) =I dE e iz(x&)j dnfgm eim(Y•n)•(x&)JJ.

f d& e iz (x - )j dri dm eim((yn)l + (x- • )JJ

iv-lql&,nl 'lz;Cn)) (4.4)-

(cf. (3.5) for notation).

Assuming that the linear integral equations (4.4)- have no homoge-

neous solutions, it follows that:

Proposition 4.2 (Departure from Holomorphicity). , 7- are holomorphic

functions of z for z I >0, zI  0, respectively. Hence the function

Y(z;x,y) defined by (4.3) is a sectionally holomorphic function of z.

In particular, _ 0 for all z, with z I s 0 and - +(z;x,y) -

3z 32
T(z;x,y) for z - zR. The departure from holomorphicity is given by:

T +(z;x,y) - Y(z;x,y) - dz -z';x,y)eiz 'J x+izy

flz'zle i zj x - iz y , 4.5

for z z 2 R' where the scattering data f(z*,z) are given by:

_-- *dVW~t~%



f f (z,,z) m- f 1 2 (z ,m)f 2 1 (m,z), f 12 (z',z)-

fd dn 2 2

f2 1(z',z) -- d dnA T I eilZ+z ) +i(z-tln f22-0. (4.7)

Proposition 4.3 (Inverse Problem-Reconstruction of the Potential q)

q(x,y) is obtained from: '

q(x,y) h-[J dz' dz (z';x,y)eIZ f(z',z)e -  x  z )y ]

-(4.8)

where T(z;x,y) solves the following integral equation:

iz"JX , -iz'Jx+i( z " - Z')y

't (z;x,y) + w f dz" r dz'I (z;xy)e f(zz)e

f z' - z + iO

I. (4.9)

Finaly from (4.2b) we obtain the following: L

Proposition 4.4 (Evolution of the Scattering Data). The evolution of

the scattering data from t = 0, f(z',z;0) is given by:

- 21A z 2 tA

f(z',z;t) - e 3 0  f(z',z;O)e 30  (4.10)

where

f(z',z;0) is given by (4.7) and A 3 0 2 diag(i,-i).

Proposition 4.5 (Bounded Eigenfunctions). A solution of (4.2a) with -

a - -i bounded for all complex values of z - z + iz and tending to I "-R I
as z * - satisfies the following Fredholm linear integral equation

Y(z;x,y) I + (G zRIYqT(z;.,.))(x,y) (4.11)

where a.

((GzY,zq(Z;. ,.)}I 4 (f o-f. ld; ddn -z-.mf d) %

(expi (M l(I-J )z) (x- )+im(y-n) I [q( ,, n)t(z;,, n) 1 j, (4.12)1)

~ ~ . ~-&'-: aQ a- a- -.. a V .I aa . . .~~'-~. : , -i a-iV .a- *,, .



and

(G (xdtfm '' ' 2) d;( 2) Idm a dndR{cG2)zz Ic W z4D f x f-M -10

(exp[-(m+i(1+J)zlx-t)+imy-n)2[q(,n)(z; ,n)]) (4.12)2j

Clj - 1-J , c 2j l+J , J - 1,2.

Proposition 4.6 (Departure from Holomorphicity). For every z c C

hmIL (~z'x~y) =Tlz;x,ylfllz R Z 'X y) 1 3

where the matrix fl is defined by: 011 = Q22 = 0

T.z 4 ij zexp ij (z;x,y), i * j (4.14)

T jz ) I. ' fd f d qt,nlT(z;&,n)}i expl-Oe lz;Cn)), i 4

2(z;x'y )  # 2i (xzR + Yzl), 21(z;x,y )  - 2i(_xz R+YZi) I

Propostion 4.7 (Inverse Problem-Reconstruction of q). q(x.y) is ob-

tained from

q(x,y) = J (z;xY) Q(ZR,zI;x,y)dz Adz) (4.15)

where Y(z;x,y) satisfies:

T(z;x,y) - f Z;X,y) n(z ,zj;x,y) dz'^dz = I. (4.16)
z-z

Finally from equation (4.2b) we obtain:

Proposition 4.8 (Evolution of the Inverse Data). The inverse data P

at time t, fl(zRZI;x,y,t), is given by

-2 2aZ R z Iz;x,y,t) - exp(z A 30 t) sl(zRZI;x,y,0)exp(-z2A30t) (4.17

where fl(zRzI;x,y,O) is given by (4.14) using the initial condition

q(x,y,O) and A 3 0 =diaq(i,-i).

5..-
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5. INVERSE PROBLEMS IN 0+1

The Lax pair associated with the PIV equation

d2 1 d 2 3 43 2 2 y
4, ( + 4 + 2 4 4td~_ y +) 3 yy + a)y + (5.1)

dd y

is given by

Y zlZ (z)+ Y(Z), "'

Yz L? [(v2eo) E-) v]
1z + . u1+" 2-1 ~ 0Ve-e" - ,uy

(5 .2a)

Yt(z) =1 z + Y(z). (5.2b)
0 -0 2( v -eo0- E)) 0

Indeed Y = Yt2 implies

L
y 2  + du -uy2)"

= - 4v + 2ty 4 0  u(y+2t),
dt 0 dt '

410(5.3) '

d~v = - 2 v2  + -- - Y)v (E0  6.)=y,

dt y y 0 y

where,

2
a 2e 1, 8 -8e0 .

As in the cases of 1+1 and 2+1, solving the initial value problem

of PIV reduces to solving an inverse problem for Y: Reconstruct Y(z;t)

in terms of appropriate monodromy data. Again this inverse problem will

be solved in terms of a RH problem. Thus it is essential to study the

analytic properties of Y with respect to z. However, in contrast to

the analogous problem in IST for 1+1 and 2+1, this task here is straight-

forward: Equation (5.2a) is a linear ODE in z, therefore its analytic

structure is completely determined by its singular points. In this

particular case z - 0 is a regular singular point and z - - is an irregu-

lar singular point of rank 2. Complete information about z - , is

provided by the monodromy matrix M and by the Stokes multipliers

a. b, c, d. Solutions of (5. 2a), Y0 and YI, normalized at zero and

% %



infinity respectively are related via a connection matrix E0 with

entries a0f B03 'Yoe 60* Taking into consideration the above singula-

rities, there exists a sectionally holomorphic function Y, with jumps

across the four rays, arg z W - i i-, - and with singularities4' 4' 4 -adwt ~glrte
at z w 0, z w -. The jumps are specified by a, b, c, d and the nature

ef singularities by M0 , %. This leads to a matrix, singular, dis-

continuous RH problem, defined on the above rays and specified in terms

of the monodromy data

Monodromy Data (MD) {a,b,c,d, a0 ,80 ,y0 ,60}.

A consistency condition of the above RH problem yields

4 -1 -1IGj )M- E0 M0 E0 ,

where G. are the Stokes matrices uniquely defined in terms of the Stokes

multipliers. Using (5.5) and certain similarity arguments it can be

shown that all MD can be expressed in terms of two of them. Furthermore,

equation (5.2b) implies that the MD are time invariant. Hence the

above basic RH is specified in terms of two initial parameters (these

two initial parameters are obtained from the two initial data of PIV).

The solution of this RH problem yields Y(z;t) and hence (5.2a) yields

y(t).

The above basic RH problem can be simplified considerably: (i)

Assume 0 < (0 < i, 0 < E < 1, e * i; then the above RH problem is0a4 0 2
regular. It is interesting that the basic RH problem can be used to

obtain Schlessinger transformations which shift 00 and ( by a half-

integer. By using these transformations the general case is reduced

to the regular case. (ii) The basic RH problem can be mapped to a

sequence 3f two RH problems, one on the line arg z - I and the other
4

on the line arg z -~ The first one is continuous (both at x = 0
and x - a); furthermore, it can be solved in closed form. The second

one is discontinuous both at x - 0 and x - -. By using standard auxi-

liary functions one maps the discontinuous problem to a continuous

one. Then the theory of continuous RH problems on simple contours

can be used to establish uniqueness and existence of solutions. Elemen-
tary solutions of PIV, expressible in terms of Weber-Hermite functions

are natually obtained within the above formalism. We summarize the

results of (7) concerning PIV.
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Proposition 5.1 (Direct Problem). Let Y be the solution of (5.2a)

analytic in the neighbourhood of z 0 and normalized by the require-

ments that det Y0 1 and that Y also solves (5.2b). Let Y.,

1,...,4 be solutions of (5.2a) analytic in the neighbourhood of infinity

such that det Y. = I and Y.- Y, as JxI . in S. where - denotes

asymptotics, Y is the formal solution matrix of (5.2a) in the neigh-

bourhood of infinity, and the sectors S. are given by

" : < arg z , S2 arg z 3w
14 2 4 _4

S 3 : - argzc -, $4: z-- < arg z < 7w
344 4 4 4

1! w 3. 5.

The rays C 1 .... C4 are defined by arg z = 4, , -, - respectively.

C3  C

2

Fig. 5.1

Then the anlytic functions Y0 , Y,...,Y4 satisfy:

°0 n.

(i) Y0 (z) -Y 0(Z) z as z 0; D0 # Diag(G 0,-e0) G0  T ' n Z,

where Y0 (z) is holomorphic at z - 0. (If 0  n/2, Y0 (z) has

a logarithmic singularity.)

SD
(ii) Y (z) - Y .z(eQ(Zl(1/z) - as IzI a, z in S D . 4 Diag(6.,-e ),



2
Q(z) 4 Diag(q,-q), q(z,t) L- + zt, Y.(z) is holomorpnic at

2

xp2,O 22Jep1tn.)VZ

(iii) Y 0 (ze
2 =') = Y0 (z)M0 , M 0 4 xp(21 exp(2iw 0 J (5.4)

Co expl-2iwe 0

; . nit e0. , 1 = 1 if e0

(iv) Y2(z) = Y (z)G1, Y 3 (z) = Y 2 (z)G2, Y4 (z) = 3(z)G 3 ,

Y (z) Y4 (ze)2ilG4M., (5.5)

where

a(1 , JG 2  ( , G3  ,a 0 c

] d

G 4 J ' M 4 exp(2inD ). (5.6)
0

0
(iv) Y (Z) - Y0 (z)E 0 , E0  [ , det E . (5.7)

10 000

Furthermore, the parameters

MD $ (a,b,c,d, coo B0 , Yo' 60) (5.8)

satisfy the following consistency condition.
4

(vi) 1 n G )M - I M-E 0. (5.91
imi m 00 0

Proposition 5.2 (Properties of Monodromy Data)

(i) The monodromy data, MD, given by (5.8) and defined in Proposition

5.1, are time-invriant.

%



tii) All of the MD can be expressed in terms of two of them.

(iii) (l+bc)exp(2iwe) + [ad + (l+cd)(1+ab)jexp(-2iwe) -2 cos2ne.

(5.10) .

In what follows we formulate a RH problem for the case that

0 < 0 <1, 0 < e <. This assumption leads to a regular RH problem.

The general case follows by considering this result and Schlessinger

transformations.

Theorem 5.1 (Inverse Problem). Consider the following matrix, regular

homogeneous RH problem along the four rays C1 ....C4 (Figure 5.1):

Determine the sectionally holomorphic function 7(z), Y(z) = (z) if

z is in S., j = 1,...,4, from the following conditions:

1. 7. satisfy the jump conditions

T 2 ( r )  f i ( C 19 1 ( C 1 , T 3 11 1 ? 2 ( lg 2 ( ) , 'V4 ( r.) = 3 ( C 1g 3 ( C ) ,

= ~4( e 2 iW )4() (5.11)
along the rays C2, C3 , C4, C respectively, where

A Q -Q ~Q -9 . eQGe -
, j = 1,2,3, g4 V e G4 e-QM (5.12)

J.VD 1'

2. Y(z) - (1) (I + 0(1)) as lzl.' -. (5.13)
z z

3. T(z) has at most an integrable singularity at the origin with a

munodromy matrix given by

?1 (ze 2 i 1 
- Y 1 (z)E 0 M 0 E, z 0. (5.14)

%:

In the above, G., Q, M, , M0 are defined in Proposition 5.1.
)0

4. The monodromy data MD, given by (5.8), satisfy the properties given

in Proposition 5.2(ii). Then:

Ii) The above RH problem is discontinuous both at the origin and at

infinity. Actually

4 4

a j E M0 0  , 0; U q - Z . 2 . - (5.15)
ja i

%4

-~ WA. 
5
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C 3 C C

I I ' 
F g i . S . 2

- ;(ii) To obtain the solution of the above RH problem consider the

following RH problem along the contour C 1 + C 3 Determine the
sectionally holomorphic function K~z), K(z) - KI (z) if z in

S I + S2 , K(z) = K2(z) if z in S 3 + S 4V from the following

conditions :

1. K satisfy the jump condition

4]

52q

h de M h -
1 on C,, 1K 1  K 2  

hlz)

I be 2 q-  ao(z) I
h h - 1 on C 3

0 -a/c

I I e(Z) - i 5.2

C 2+C 4  -z

(If ht, h 2  denote h in S 2 + S3 and S4 + fo respectively then hh

on CI, h - h 2 on C 3 .

2. K(z) - + 0 as 
hz2 

{



,-a. € % %-..:. - " -' J .' -.. ; : . . fl . . < ,; - ; :---w . .:

3. K(z) has at most an integrable singularity at the origin with a

monodromy matrix given by

K(ze 2 i w) - K(z)h I0)E 01M E h (0), z - 0. (5.18)

The above RH is discontinuous both at the origin and at incinity.

Actually if gKI#gK3 denote the jump matrices along C I, C3 respectively

then

K1gKI- hi(ME 1M 0 E 0 h 1 (01' z - 0; g I- M , z -(. 5.19)

However, the above RH problem can be mapped to a continuous one using

the auxiliary functions

1 ea (5.20)

(-)
±1zt1

to remove the above singularities.

Y is related to K via:

Y= Kh if z in S+S I= KhM, M p Diag(l,-a/c), (5.21)1 2;2

if z in S +S

(i.e., y1 = Khip T K h2  Y 3 =K 2h IM, K2 h1 M).

Proposition 5.3 (The Solution of PIV). Let t(z) be the solution

matrix of the inverse problem formulated in Theorem 5.1. Then y(t),

1 du 2qlz)u at + 2t), u 4 -21im Y21(z)e (5.22)

solves PIV.

6. INVERSE PROBLEMS IN n SPATIAL DIMENSIONS, n> 2

Consider the inverse problem associated with the following system of

N first-order equations in n+1 dimensions:

n
Sr J Jt L X qf', -p + ioI , 0a, 0, n > 1, (6.1)

-0  La

% % % %
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n+1

where q(x0,x) is an N x N matrix-valued off-diagonal function in R

decaying suitably fast for large x., x, and the J are constant realt 1
diagonal N x N matrices (we denote the diagonal entries of Jt by Ji,

...,JN). Alternatively, using the transformation

n
y(z,x 0 ,x) - u(z,x 0 ,x)expli I zt(xt- ox0J})], z cCn ,  (6.2)

La•

equation (2.13) becomes

n
0 o t(x + izt[J ,j.]) = qw. (6.3)

We assume that n < N, otherwise the entries of the J matrices will be

linearly related and one can always reduce n by a change of coordinates.

An inverse problem in this case is defined as follows: Given appropriate

inverse data T, where T is an N x N matrix-valued off-diagonal function

of suitable inverse parameters, reconstruct the potential q. Again

there exists a M which is bounded for all complex z, z zCn. a/ia.
depends on appropriate inverse data T(zR,zlfm 2 ..... Mn), zRc]Rn, zi]R,.

m C R. T satisfies --hf==._T .Using this equation and introducing

Born variables, i 4,

Z, M WoWx w0 C , w P, C \ Cn , (6.4)

one obtains a characterization equation for the inverse data:

d ) j d X ' N 
1I L . A.'~ , P e

•l ~ 1 f R"' I

Ti( ,w) T(w 0 ,w X) - f"(6.5)
PX X -;

where N is a quadratic function of T. That is, T '(z,m) is appropriate

inverse data iff the right-hand side of (6.5) is independent of X.

Hence, equation (6.5) serves as both characterizing T- and defining

TiJ  This equation was first introduced by Nachman and Ablowitz [8). ,

Using equation (6.5) and taking the limit of 4 as xi - we show that

the general problem of reconstructing an N x N potential q in n+1 spatial

dimensions, is reduced to one of reconstructing a 2 x 2 potential with

entries q i , qji in two dimensions. The inverse data needed for this

reconstruction is precisely Tij,T]'. This reduction makes crucial use

of the existence of redundant scattering parameters. In this sense it

is the analog of the Born approximation. However, the crucial difference

- . . . . . . . . . . . . 5,
,, .. ..-. -. .. .- .,,". ". . ',. .-"r .'.':.. .' . ',, ',-. '.-.. .".. .. .. -. .." . -. .'..;..''.. '... " .. "" . ' ; ' "*' - ."• ,.,q" " :



A0

is that while in the inverse scattering of the multidimensional Schro- p

dinger equation one can reconstruct the potential in closed form, here

one can only reduce the general problem to one for 
2 x 2 matrices in

two dimensions. This reduced problem was solved in (61. In the follow- P,

ing, we summarize the results of 191.

Proposition 6.1 (Bounded Eigenfunctions). The function 1A(x,z)"

defined below, solves equation (6.3), is bounded for all complex values

of z and tends to I for large k:

sn Jexpf i$ )(X 0 ~, 1 -~ 1 z
l j(Xoo, Z) + . - : dt 0d,1?

211 2 I (x1 _E1 ) - OJ (x

(qt~j( 0  1' Cn(&00&1.I - (Xr' .. . .X ( & ) J 0 ) z( .) .

2 1, cC ,6.51 4

where B13 is defined by lo

L__ 2 Iz -"
,](x 0 xlfz) a( ' -.L=1 I 1 R I

(6.6)

Equivalently uij satisfies

sgn(oi J i  -
sgn(j 1 1  2 ia (x-f,m)

(x0 , z) = n+1 dme
____n+__ 1 d-d I nd 1

2w i On1|~I

exp[i~iJlx0-&0,Xl-C1zlllqw)lijl & 0 , ),
0 (6.7)

-x C-°j I (Xo0- & 0 )

where

2 n n.
dm 4 dm 2 . ..dmn a (xm) I E mt(Xt-x ) c (6.8)

L=2 (2 I (2w) n

Proposition 6.2 (Departure from Holomorphicity). Let )A' be defined

by eq. (6.5). Then

• . . . .. . . .. • ....-.-...-.-.-. --. -'.. -.' .' ' .-.' ''V .'. ." ',.' ", I



3.(x0 5x,z) - Z W:i J3)exp~ii1' x0 ,X1,z)]
32p iJ P

.X C n-1 f3n-1 dmexpi i(xm)]T i(z,m)ul(xox, A'(zm))E ij, (6.9)

where Bijlxoxloz), i(xom) are defined by (6.6), 6.8) respectively; E
this an N x N matrix with zeros in all its entries except the i)t , which

equals 1; and Xij and Ti j are given by

A (z m) (z" - , ),z,m) = (z +m Z ; r 2....,n.I 1R .=2 L r rR rr

y* a/471 iIJc1O'

h ~ ~~~TiJlz,m) VJ fir n + I d~odt exp[_iB ijl0(E )i (,llui~ ,,)

(6.10)

Proposition 6.3 (Characterization of T)

(a) Assume that au/az is given by Eq. (6.9) and the Tij(z.m) is givenp
by (6.10). Then

]T= l r c dM 2Ti1 ()03(zM),m-M)Tt)(zm)rp n£ fcn ni

-[(JL jj)(J...JL) (JLJJ)(JlJL)] 0 N'3[Tl(zm), (6.11)p p r r r r p p rp

where

, L'3 * (j j, (ji .- ) _. (6.12)

rp p- r r (.2

(b) Assume that au/az is given by Eq. (6.9) and that 32u/z rz

is symmetric with respect to r, p. Then Ti'lz,m) solves (6.11).

Following A. Nachman and M. J. Ablowitz we introduce appropriate
.Born variables. Then equation (6.11) can be integrated. Furthermore,

we can compute the limit of Ti 3 in the new coordinates as Ix I "

(see below):

Z, % e. I



Le , nCI and X = 2 be ",

0 1
Let Wo~ wi =o2,....nc andcC ,2 ..... b.

defined by

n ji_jj n jijj n
ij r ~ r 12 i) $ -r -r (z -E0 ru1 °I I r=1 o J i (z r=2 r W ji' ,

1 1 4.

z4

w L m-, X i ' " 2....n. (6.13)J) - l

Assume that

(jr, j(Jli_jj) * (Jijl)(jr -J)A for all distinct ij,r and p#1.
p p p p

(6. 14)

For convenience of writing we usually suppress the superscripts, i'j

in w 0,w 1 , X. Let z denote z i. ... ,zn , m denote m 2 .... mn , X denote

X2... Xn' w denote w I ... w. Then we have the following.

(a) The inverse of the transformation Zm w0 , w, X is given by

n

zi =x1 JJ), m£ w L , L 2.....n, l - r (J 3-J IX +

2 n i
/a )WO +rW r j r

r-
' i (6.15)

(b) In the new coordinates, Eq. (6.11) with r = I becomes 4.

3T.

(w0,w,xl a N (Tj(w0 ,w,X), p - 2,...-n. (6.16)
axp 0

(c) In the new coordinates,

Tij(w 0 1 w'X n dod exp(-i(w0 0 +wE)l(qul) ij) C0' wwx)

where

n
wC E Wr (6.17)

r 1 r r



(d) Let

1j") 4 u1'j(xofxw~ i,w *j Xi) li - un u
1 0 1

l pl-

Then the ' satisfy
i

i

, , Oqn'a 1J1) Cn-1.2nx
i "' ~ 2vi fi

2dx~dxdw expli((xo- x6)W0  +(X-X')WlI

sgn( if))
n-1 2n

2'vi Jf2n

dx~~dx'dw 2 q)1(xj',XC'WCC(x 'XWW

-X - oJ IJ3 0, for all , ti,sj.

(6.19)

(e) lrn T 3(w0 1w'x) fi = ~ d exp(-iwOE.04wt)1

q3CA 3CAww)4 T~j(W0 1 w)* (6.20)
1C

Mf The basic characterization equation is given by

- ~ ~ - dx~dXN'jTj(w 1 wx 6.)

T w 0 1 w) T 3(w "wX) 2 (6 221X
ofJ XP - X

where X'denotes 2 .* , x1 4 .*.x.

It follows from the above that as Ix 1---, the U j's decouple. I

P
Furthermore, the ', j satisfy a system of two equations depending

ii ji1 1on q ,q I t turns out that: (a) By introducing appropriate spatial

variables E, the Jusatisfy equations in two spatial 41wwnsions.



(b) The inverse data needed to reconstruct ji • (and hence q

q I) can be obtained from T 
1

Proposition 6.4 (Reconstruction of q). Let

Jiji - J
2 r r I r

Or j i' =-i -r r = 1....n, (6.22)

2 1 2 12 12

where for convenience of writing we have suppressed the dependence of

OrBr on i j. Let 0 c J, c n

x0 C0 ' x, =  t 1 '  x 2  = 2' (6.23)

xL = + 0 * L E + 8 L 2' = 3..., n.

Then we have the following:

(a) The system (6.19) becomes

- asgn °IJ l  1

.. .. OJ";

s&n 2 j~~1
expi oJ( 0 O 0 5 ; 1 -y.i Gu.2 1 i'3'...(n z ' '

' Jl

.J.
-1 = + sgn - 2  I "

.x - r (6.' n )24)
C J -

. where .

- . (z ar  + zr )  9ij(x 0  xI i)•
2. r Jr r rl"
i'i -i Ji

i x o x1 ,£1 + __-_ (Cz) Io [x0 o
2 zI - xl (6.25)

(b) i in the new coordinates becomes

T' 5(i,A) f~pn4I dC.6dC' exp(-i9')(%.(.;,) +

% %



7]
i n

+ '2~ + r M ) (6 .26)
2 11 r=3r

where
n

m2 * M 2 + I Mrsr, im - in1 , - - 3 .... n. (6.27)
ru3

(c) The inverse data associated with (6.24) and the analogous problem

for are given by J.Le

2 . di expIiri (- l,
'2TF 1'*'( C 1- Jn-I 221 7)

11 [1

+ i z rE T')lzm). (6.28)
r=3 r r

4.

Then

T i - 2 d6di exp[-iil3J6,tz)]

u.'iU 'I1 - ' (6.29)
*x(q Jii0;2) j -f, 3

1

Equations (6.1)-(6.3) with a = -1 lead to a system which appears

to be physically more interesting: (a) Since the system is hyperbolic one

may consider the physically important question of inverse scattering (IS);

i.e., given a scattering amplitude function S(I,k) find the potential

q(x 0 ,x). (b) A special case of the above system, namely if the J s are

constrained by

t - Ji -

-2 •p. r 1,I ... ,.n, 1,j,t =( . ..N 6.6)

jL JJ ji J3
r r r r

'"

is associated with the N-wave interaction in n+1 spatial and one temporal

dimensions [10]. The above system can be considered as a limiting case
of (6.1)-(6.3) [8]. Alternatively, it can be considered on its own right

(11]; the problem of reconstruction can be reduced to one for a 2 x 2

matrix problem in two spatial dimensions.
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